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A study is made of the complex flow which develops in the passage of a shock 
wave through a cloud of hot gas. Several new effects are discovered. 

The problem of the propagation of shock waves in gas clouds with variable parameters 
has recently been under intensive study in astrophysics, the theory of combustion, and plas- 
ma physics. The investigations [i, 2] experimentally examined the interaction of shock 
waves with entropy discontinuities and looked at acoustic and dynamic aspects of the prob- 
lem. Simple mathematical models were constructed for some of the effects observed. The 
authors of [3, 4] studied the passage of shock waves through a weakly-ionized plasma cloud 
from a laser spark. They examined the question of the dissipation of shock waves in the 
hot region of the spark. 

Here, we numerically study a two-dimensional axisymmetric problem on the interaction of 
a spherical blast wave of volcanic origin with a hot eruptive cloud; some of the effects ob- 
served experimentally in [1-4] are confirmed and several new phenomena are discovered. 

i. We will examine the problem of the passage of a spherical shock wave through a 
cloud from a volcanic eruption. The cloud is modeled by a spherical thermal consisting of 
nonuniformly heated gas. Here, we ignore the chemical composition of the cloud and its 
content of suspended dust. It is assumed that the centers of the thermal and the explosion 
are located on the same vertical at the initial moment of time. In the absence of lateral 
perturbations (such as wind), motion is axisymmetric. As the mathematical model, we will 
use the complete system of nonsteady Navier-Stokes equations for a compressible heat-conduct- 
ing gas in the cylindrical coordinates r and z (see [5]). The gas is presumed to be perfect, 
with the equation of state p = ApT. The viscosity coefficient p and thermal conductivity k 
are assumed to be constant, while the atmospheric density pa(z) and pressure pa(z) decrease 
exponentially with altitude z. 

We seek to solve the initial equations in the region formed by the plane z = 0 (passing 
through the center of the explosion), the symmetry axis r = 0, and the movable right r = 
f(t) and upper z =~ (t) boundaries. The movable boundaries are located far enough from the 
thermal and the shock front and move in such a way that the values of the gas dynamic parame- 
ters on the boundaries are equal to the corresponding parameters of the undisturbed surround- 
ing medium, i.e., r = f(t) and z =~(t): u = v = 0, p = p=(z), T = Ta. At z = 0, we impose 
the boundary conditions: v = 8u/Sz = 8T/~z = 0, while on the axis at r = 0 we impose the 
symmetry conditions: u = By/St = 8p/Sr = 8T/Sr = 0. 

In choosing the initial conditions, we use data on impulsive inversions of moderate in- 
tensity [6, 7]. Thus, the initial radii of the thermal and the spherical shock wave R 0 = 
50 m, while the temperature in the cloud changes beginning with a certain point (r = 0, z = 

H0) by the law T = T~+ (T~ - T a)exp[-(4R/R0)2], R = /r 2 + (z - H~ 2, Ta = 288 K, Tl = 2000 
K, H ~ = 100 m. The distribution of gas dynamic parameters inside the shock front corre- 
sponds to the solution of the problem of a spherical explosion at the point r = 0, z = 0 [8]; 
outside the front, the gas is at rest: u = v = 0, p = pa(z)- 

We introduce the following characteristic scales in the problem: L = H ~ = i00 m for 
length; /L-7g = 3.2 sec for time; ~g = 31 m/sec for velocity; T~ = 288 K for temperature; 
P0 = Pa(0) = 1.23 kg/m 3 for density. As a result of the conversion to dimensionless quanti- 
ties, we obtain the following parameters for the problem: Re = L/Lgp0/p, Reynolds number; 
Pr = pcp/k, Prandtl number; M = /Lg/yAT~, Mach number; y = Cp/Cv, adiabatic exponent. 
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Distribution of isobars for the moment of time t = 
i) 0.93; 2) 0.98; 3) 1.03; 4) 1.08; 5) 1.13; 6) 

Fig. i. 
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Fig. 2. 
moments of time: i) 0.032 sec; 2) 0.064 sec; 
4) 0.16 sec; 5) 0.22 sec; 6) 0.32 sec. 

Profiles of pressure on the coordinate axes for six 
3) 0.096 sec; 

In dimensionless variables, the initial system of equations has the form: 
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T h e  g o v e r n i n g  p a r a m e t e r s  o f  t h e  p r o b l e m  w e r e  c h o s e n  a s  f o l l o w s :  Re  = 5 0 ,  M = 0 . 1 ,  y = 
1 . 4 ,  C z -- - 1 .  

S y s t e m  o f  d i f f e r e n t i a l  e q u a t i o n s  ( 1 )  i s  a p p r o x i m a t e d  b y  m e a n s  o f  a n  i m p l i c i t  d i f f e r e n c e  
s c h e m e  i n v o l v i n g  b r a n c h i n g  o f  t h e  f u n c t i o n s  a n d  c o o r d i n a t e s  a n d  h a v i n g  s e c o n d - o r d e r  a c c u r a c y  

[ 9 ] .  We u s e  a t h r o u g h  m e t h o d  o f  c a l c u l a t i o n .  S i n c e  t h e  c h o s e n  s c h e m e  i s  n o n m o n o t o n i c ,  n o n -  
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3. Distribution of the velocity field at t = 0.32 sec. 

4. Distribution of the velocity field at t = 0.45 sec. 

physical oscillations develop with through calculation of the shock fronts. To damp these 
oscillations and reinforce the stabilizing properties of the scheme, we use smoothing oper- 
ators. We use a "monotonizer" of the Buch-Boris type proposed in [i0] and explicit linear 
three-point smoothing (see [8]), 

The accuracy of the results is checked by varying the number of nodes of the theoreti- 
cal grid and checking for satisfaction of the conservation laws. The relative errors for 
mass and energy are found as follows: 

where 

6 ~ = ( M o - - M 1 ) / M  o, 6E = (E o - -  E1)/Eo, 

f �9 f ~ 

0 0 0 0 

Eo=2~ j' S~(r, z, O)rdrdz, E1=2~ j' ~s(r, z, t )rdrdz;  
0 0 0 0 

here, ~ = p/ (~  - i )  + ~M2p(Ivl2/2 + z)  i s  the t o t a l  energy. 

The calculat ion was performed on a i01 • 201 grid on an Es-1055M computer. 

2. Let us proceed to the analysis of the r e su l t s .  We are examining the s i tua t ion  when 
ejection of the volcanic cloud is  followed by an explosion and the formation of a spherical 
shock wave that  overtakes the cloud. We calculated two var iants :  with i n i t i a l  pressure 
gradients on the wave front Pl/P0 = 2.2 and 1.5. However, since no qua l i t a t ive  differences 
were seen between these eases, we subsequently studied only the f i r s t  case. The effects  
that were obtained were manifest to a somewhat greater degree in th is  instance. 

A certain amount of time a f t e r  the leading shock waves reaches the thermal, the part of 
the wave adjacent to the symmetry axis ends up in the body of the thermal and moves forward 
through heated gas. Since the veloci ty  of perturbations is  greater in hot gas than in an un- 
heated medium, a section of the leading front in the cloud moves ahead of the remaining part 
of the front.  I t s  accelerated motion eventually leads to i t s  separation from the main front 
and the creation of a secondary structure in the form of a dome-shaped precursor. 

Figure I shows the d i s t r ibu t ion  of l ines of equal pressure for the moment of time t = 
0.22 sec. The isobar d i s t r ibu t ion  c lear ly  shows the movement of the precursor, with a maxi- 
mum pressure on the leading edge equal to 1.03 versus a pressure of 1.13 for the main shock 
wave. Pressure drops sharply during passage through the hot cloud, and the d is t r ibu t ions  of 
the gas dynamic parameters become diffuse (see curves 1-3) in the horizontal and v e r t i c a l  
directions (Fig. 2). Figure 2 shows the corresponding d is t r ibu t ions  of pressure on the axes 
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Or and Oz for several moments of time. The pressure profiles on the Or axis are identical 
to the profiles in the absence of a thermal. Here, the dot-dash line shows the distribution 
of temperature on the Oz axis. The distribution remains nearly unchanged during the time 
interval (0.032 sec; 0.32 sec). Thus, in the upper part of the front, the shock wave forms 
a "hole" - a low-pressure region through which the energy of the gas disturbed by the ex- 
plosion begins to be pumped to the precursor. A similar phenomenon of "hole" formation in 
a shock front has been seen in experiments (see [3]) for the case of the passage of a weak 
spherical wave through a laser spark. The formation of a hole in this study was interpreted 
as the disappearance or dissipation of the shock wave (since it was remarked that recording 
techniques make it possible to fix the shock front in any case - even when its intensity has 
decreased by more than an order of magnitude). In fact, as the numerical experiment showed, 
the impossibility of locating the front can be explained by the following circumstance. 
During the formation of the precursor, the pressure profile turns out to be so diffuse that 
it can no longer be identified as a shock wave - not because of the low amplitude, but be- 
cause of the relative length and the smallness of the gradients on the leading edge (see 
curves 3-4 in the horizontal and vertical directions in Fig. 2). 

The energy transfer in the problem being examined here is more intensive than, for exam- 
ple, in the interaction of a shock wave with a thermal boundary layer (see [ii]). Gas from 
the internal region and from zones near the leading edge adjacent to the precursor tends to 
move to the lower-density region near the symmetry axis and collapse about it, forming sec- 
ondary detonational shock waves. One of these waves is directed upward and "feeds" the pre- 
cursor. Propagating in the cloud, the precursor continuously increases in size and even- 
tually embraces the entire flow region. Thus, the initial flow pattern is distorted~ A 
second of the detonational shock waves creates an intensive flow in the form of a reactive 
jet in the neighborhood of the symmetry axis. This jet is directed downward (see the veloc- 
ity field in the collapse region and below in Fig. 3; also shown in Fig. 3 are the external 
and internal boundaries of a thermal with temperatures of 425 and 1820 K, respectively). 
A similar reactive jet flowing downward has been seen in experiments (see [12]) in the study 
of the interaction of shock waves in air with a bubble of lighter gas. 

One more feature of the flow being examined is the formation of a complex Mach config- 
uration in the form of a suspended shock near the external boundary of the thermal (by ap- 
proximately t = 0.15 sec). This shock arises from the collision of the precursor with the 
undisturbed front of the initial shock wave (see Fig. i, where the isobar distribution clear- 
ly shows the suspended shock formed near the base of the precursor). As a result of this in- 
teraction, maximum pressures are realized in the region of the suspended shock. Thus, the 
pressure on this shock is 1.18 for the moment of time i = 0~ while the pressure is 1.13 
on the main front and 1.03 in the precursor. 

Over time, the secondary detonational shock which is moving upward overtakes the lead- 
ing edge of the precursor [and increases its amplitude somewhat as a result of the interac- 
tion (see curves 4 and 5 in the vertical direction in Fig. 2)]. Nevertheless, pressures are 
not subsequently equalized on the main front and in the precursor. By the moment of time 
t = 0.32 sec, pressure is equal to i.i on the shock front (on the Or axis), while it is 
equal to 1.02 on the leading edge (on the Oz axis) of the precursor - which has weakened in 
the acoustic medium. 

The most intensive part of the leading front - which did not pass through the thermal - 
naturally propagates in the undisturbed atmosphere more rapidly than the precursor after 
the latter leaves the thermal. Over time, the external boundary of the gas that is moving 
first begins to take an ellipsoidal form (extended along the Oz axis). Then, roughly by 
the moment of time t ~ 0.65 sec, it begins to take a spherical shape. Although the radius 
of the leading edge increases by nearly a factor of six in this instance (rf ~ 280 m), com- 
plete reestablishment of the shock wave does not take place - a "hole" remains in the top 
part of the front, while a suspended shock remains at the base of the precursor. 

The numerical experiment also confirmed the observations made in [i] regarding the 
marked influence of a shock wave passing through a thermal on the dynamics of the latter. 
Interaction with the shock wave accelerates the process of vortex formation. A vortical 
develops in this case after 0.4 sec (see Fig. 4, which shows the distribution of the veloc- 
ity field in the theoretical region for t = 0.45 sec; also shown are the external and inter- 
nal boundaries of a thermal with the temperatures 425 and 1800 K), while a freely-rising 
thermal is transformed into a vortex ring roughly three times more slowly - over a time in- 
terval equal to 1-1.2 sec. 
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Interaction with a low-intensity spherical shock wave has little effect on the ascent 
of a thermal. The passage of the wave through the cloud lifts it slightly as a whole, while 
its hottest part is displaced upward somewhat relative to the center. Thus, by the moment 
of time t ~ 0.65 sec, the thermal has risen 7 m in the case of interaction and 2 m in the 
case of free drift (the distance the thermal rose in these cases was determined from the 
hottest point). The difference between the results compared to the characteristic linear 
scales (50-100 m) is negligible. 

In conclusion, we note that a check of the accuracy of the solution with regard to sat- 
isfaction of the conservation laws showed an error of 0.7% for mass and 2.1% for energy on 
a i01 x 210 grid. The results obtained on a double grid (201 x 401) were nearly the same 
as the main results. 
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